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Abstract — Distributed simulation modeling is in urgent need 
for two reasons: one is that the computational power 
demanded by the large-scale microscopic traffic simulation 
keeps increasing; the other is that independently and 
incrementally developed sub-networks of a large region need 
to be modeled simultaneously due to their interactions. In this 
paper, we propose a distributed modeling framework which 
including two categories of modeling strategies, namely, light 
global control / independent subnets vs. heavy global control / 
coordinated subnets. We have implemented the distributed 
scheme of light global control / independent subnets and the 
implemented details, such as communication techniques and 
vehicle transferring across the boundary of two subnets are 
discussed. Unlike the previous studies using the dedicated high 
performance machines, our efforts are to utilize the low-cost 
networked PCs that are commonly available. By using the 
Application Programming Interface (API) functions 
supported by off-the-shelf Paramics software, we are able to 
distribute the computational load of microscopic simulation to 
multiple single-processor PCs without access the proprietary 
source codes of the simulation program. Performance testing 
and analysis of the implemented prototype demonstrate that 
the proposed framework is very promising. 

I. INTRODUCTION 
IMULATION modeling is an increasingly popular and 

effective tool for analyzing transportation problems. A 
traffic simulator for dynamic traffic management plays two 
distinct roles: as an off-line evaluation / design tool and as 
an on-line control / guidance tool. Both roles could be 
computationally intensive and demand fast simulator to 
fulfill their tasks.  

Three primary types of simulation applications 
immediately show the need for faster simulations: (1) Off-
line Planning: Many types of localized traffic jams, which 
can only be produced on the micro-simulation level, affect 
people’s modal and route choice. Integrated planning using 
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microscopic modeling requires efficient simulations of 
large networks of the kind needed for planning exercises.  
(2) Online Control/Guidance and Emergency modeling: 
The online simulation applications such as prediction for 
traffic control require the model to run much faster than 
real time. This is even more important if modeling is to be 
used for emergency management requiring area-wide 
evacuations. (3) Monte Carlo Analysis: The apparent global 
stochasticity of traffic is captured in most modern 
simulation approaches. In order to generate credible results, 
multiple simulation runs are a must. 

Although Moore’s law (the speed of a microprocessor 
would double approximately every 18 months) has been 
proven remarkably accurate to date [1], the complexity of 
the systems we are interested in simulating also keep 
increasing. Given the increasing network size requirements 
for analysis, it would remain impossible in the near future 
for a single processor to provide satisfactory simulation 
performance. This implies that harnessing additional 
processors in parallel and decomposing the problem 
domain into sub-domains is an option of promise, and 
perhaps the only solution. 

Although dedicated high performance computing 
systems can significantly reduce the computational time, 
most transportation agencies cannot afford them. The most 
optimistic and affordable computational environment in the 
near future for most transportation agencies is a network of 
personal computers (PCs) connected by local area network 
(LAN). By distributing the computational load demanded 
by large-scale simulation to the inexpensive networked 
PCs, our goal is to relieve the computational burden and 
speedup the simulation.  

In addition to the above issues, decomposed and 
distributed simulation scheme is a must when 
independently and incrementally developing network data 
sets and debugging the simulation cases in any operational 
computer environment. For instance, it is nearly impossible 
to develop a network data set for all of Los Angeles basin 
or the San Francisco bay area without significant 
decomposition of simulation efforts across analysts and 
modeling personnel. Therefore after the independent sub-
networks are developed, there is a need to run these models 
simultaneously due to the network interactions.  

In this paper, we propose a distributed modeling 
framework for the large-scale microscopic traffic 
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simulation. In our proposed distributed simulation 
environment, the target large network will be divided into 
sub-networks, and each sub-network will be simulated on a 
separate desktop PC. Our distributed computing 
environment consists of a network of PCs operating under 
Windows XP and connected by a 100 Mbps LAN within a 
client–server framework. This type of computing 
environment is low-cost and commonly available to the 
transportation agencies, therefore the proposed framework 
can be adopted readily. We have selected Paramics 
(PARAllel MICroscopic Simulation) as the simulation 
platform and developed a software toolkit using 
Application Programming Interfaces (API) to demonstrate 
the distributed modeling framework.   

This paper is organized as follows. We first offer a brief 
overview of previous efforts on the distributed traffic 
simulation. We then present the general architecture of the 
proposed distributed modeling framework. Two categories 
of modeling strategies, namely, light global control / 
independent subnets vs. heavy global control / coordinated 
subnets are described. We have implemented the 
distributed scheme of light global control / independent 
subnets and the implemented details, such as 
communication techniques and vehicle transferring across 
the boundary of two subnets are discussed. Performance 
testing and analysis of the implemented prototype are 
followed. Finally, we offer concluding remarks and future 
research directions in the last section. 

II. LITERATURE REVIEW 

A. Previous Efforts on Distributed Traffic Simulation 
Distributed (or parallel) simulation is an application of 

distributed computing which aims at decreasing the 
computational time by engaging different processors of a 
multiprocessor system or different computers of a network 
to share the workload of a simulation program when latter 
is executed [2]. There are a few traffic simulation 
applications have adopted distributed computing 
techniques, including Transportation Analysis and 
Simulation System (TRANSIMS) [3], Advanced 
Interactive Microscopic Simulator for Urban and Non-
Urban Networks (AIMSUN) [4], and Parallel Microscopic 
Simulation (Paramics) [5], etc.  

TRANSIMS is an integrated travel forecasting model 
designed to give transportation planners information on 
traffic impacts, congestions, and pollution. Distributed 
implementation in TRANSIMS is based on a domain 
decomposition principle, where the network is partitioned 
into domains of approximately equal size, with each CPU 
of the distributed computer responsible for one of these 
domains [6]. AIMSUN is a microscopic simulation 
program originally developed as a sequential, but later 
exported to distributed computers [4]. For distributed 

simulation implementation, AIMSUN uses a sequence of 
instructions that executed within the context of a process to 
handle a group of entities that need to be updated at every 
time step. A process therefore can be executed in 
distributed fashion by the multiple processors/computers 
system. 

B. Paramics Simulation Tools 
Paramics is a suite of microscopic simulation tools used 

to model the movement and behavior of individual vehicles 
on urban and highway road networks [7]. It simulates the 
components of traffic flow and congestion, and presents its 
graphical animation output simultaneously for traffic 
management and road network design. One important 
feature of Paramics is that it allows the user to customize 
many features of underlying simulation model through 
API, so communication techniques such as message 
passing can be programmed to link Paramics models in 
different computers in the network.  

Paramics was developed originally for a shared-memory 
Connection Machine CM-200 with 16,000 processors in 
1992, using a data-distributed approach and being able to 
simulate approximate 200,000 vehicles on 20,000 miles of 
road lanes [5]. However, to make good use of CM-200, the 
data must be in a parallel array form so that operations can 
occur in parallel on the elements of the array. In 1995, 
based on the previous success, Paramics was further 
developed using message-passing interfaces (MPI) and was 
targeted on a 256-node CRAY T3D [5]. This solution, 
named as Paramics-MP, could model 120,000 vehicles at 
three times the real-time rates on 32 nodes of the T3D. 
However, since Paramics Version 2.0, the commercial 
Paramics-MP is not available in the market. Another 
notable work on the Paramics parallelization is from the 
group at the National University of Singapore [2]. The idea 
was to divide the network into several regions and simulate 
under different instances of the program simultaneously, 
allowing transfer of vehicles at the boundaries of different 
regions. The method was implemented in Paramics API on 
a multi-processor UNIX System. 

It must be noted that the above parallel simulation efforts 
are quite different in nature with what is proposed here.  
The majorities of them are targeted on the dedicated high 
performance system with multi-processor and share 
memory running UNIX system. Cares must be taken for the 
programming of a parallel code to prevent simultaneous 
access of same data in the share memory. The realization of 
distributed simulation usually requires the access the 
proprietary source codes of simulation software. Instead, 
our efforts are to utilize the low-cost networked PCs that 
are commonly available. By using the API supported by 
off-the-shelf Paramics software, we are able to distribute 
the computational load of microscopic simulation to 
multiple single-processor PCs without access the 
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proprietary source codes of the simulation program. The 
methodology proposed in this paper is a distributed 
modeling framework especially suitable for path-level 
computations across sub-network simulations.  

III. DISTRIBUTED MODELING FRAMEWORK 

A. General Architecture 
Before deciding the distributed architecture, CPU time 

consumed at each stage of the simulation process needs to 
be measured in order to identify which of them should be 
distributed. From the experience of parallelization efforts 
other traffic simulation software and also verified by the 
computation load study in our previous research [8], 
individual vehicle updating at each time step is most time 
consuming, and traffic detection and control is the second. 
Therefore, the basic distributed architecture is to 
decompose the large network into several sub-networks, 
and each sub-network will be simulated on a separate 
desktop PC. 

Distributed computing systems predominantly use client-
server model. Under this model, one processor called the 
client coordinates the other processors in the system, called 
servers, to function as a single computational unit. 
Coordination is performed through the message passing 
among the client and the servers. Therefore, the general 
distributed architecture will include at least one controller 
(client) and several sub-network simulators (severs).  
Although the controller may have various tasks related to 
coordinating the traffic simulation itself, the essential task 
from a computational architecture standpoint is the 
synchronization of the time in each sub-network, either at 
every simulation time-step or at specified intervals of times. 
To synchronize the simulation time, the controller will have 
to be able to start and stop the sub-network simulation at 
any time.  

During a simulation run, the controller and simulators 
communicate over the distributed platform. The sub-
network simulators act as slaves to the controller.  During a 
time step of simulation or certain time interval, a simulator 
executes a non-blocking loop (asynchronous 
communication) while waiting for a new request from the 
controller. A request is simply a message associated with a 
specific task.  When the request arrives into a sub-network 
simulator, it starts with an execution of the corresponding 
sequential code. When all simulators are “checked in”, the 
simulation master clock advances by one step and 
broadcasts the new times to every simulator in the system.  
Each simulator then proceeds until it reaches the master 
clock time. A pictorial description of the scheme to be used 
for distributed processing is shown in Figure 1. Depending 
on different simulation strategies, the controller-simulator 
architecture could lead to different styles of design, 

including light global control / independent subnets and 
heavy global control / coordinated subnets, as described in 
the following.  

 
B. Light Global Control / Independent Subnets 
The light global control / independent subnets design is 

the simple form of distributed simulation. In this case, each 
sub-network simulator has its own origin-destination 
demand matrix and its own route tables, but its simulation 
clock time is synchronized by the controller. In other 
words, if the time synchronization from the controller is 
removed, each sub-network simulator should be able to 
perform its simulation independently.  The only task for the 
controller is to synchronize the time clock for each sub-
network.  

Communication between subnet simulators is required 
when an object (a vehicle) moves from one sub-network to 
another. A message is sent from the originating simulator to 
the receiving simulator describing the object, and the 
“ownership” of the objects is thus transferred. Once the 
transfer is confirmed, the vehicle object disappears at the 
destination zone of the originating sub-network, and the 
corresponding vehicle will be generated from the origin 
zone in the receiving sub-network. 

This design features easy implementation since the 
vehicle routing has been taken care by the individual 
simulator. On the other hand, since each simulator knows 
only the local traffic condition in the sub-network, without 
knowing the big picture of the large network, this design 
may suffer from the unpractical or unrealistic routes taken 
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by some vehicles. Therefore the congestion pattern from 
the simulation may be distorted from reality. 

C. Heavy Global Control / Coordinated Subnets 
The design with a heavy global controller and 

coordinated subnets is at the other end of the spectrum, 
compared to the previous design.  In this case, not only will 
the controller synchronize the time clock of simulators but 
also contain the global abstract network, global O-D matrix 
and global routing table. The global abstract network is a 
simplified network from the original large network, and 
used only for routing purposes.  The controller will control 
the vehicle generation in the sub-networks and the 
individual vehicles' paths.  The local traffic condition in the 
sub-networks will be reported back to the controller and 
used in the dynamic update of the global routing table.  
When a vehicle comes to the boundary of the originating 
sub-network, the controller will notify the receiving 
network to generate an identical vehicle, and continue to 
route the vehicle to the destination.  Here, each sub-
network simulator is only used to update the individual 
vehicle’s location according to the car-following, lane-
changing and gap-acceptance models, which are the most 
time-consuming parts in microscopic simulation. 

The benefit from this design is that vehicle’s origin-
destination and its path are all controlled at the global level, 
as opposed to the local level in the previous design. In this 
aspect, the design is similar to the simulation over single 
processor in term of routing, with the distinction of 
updating vehicle’s location over distributed processors.  
But the communication load between the controller and 
simulators is also significant higher than that of previous 
design, which may slow down the simulation. 

D. Communication Techniques 
There are several communication technologies that are 

popular used for distributed computation, including 
Distributed Component Object Model (DCOM), Common 
Object Request Broker Architecture (CORBA), and 
Windows Socket Programming (Winsock). DCOM [9] 
allows for peer-to-peer communications between 
computers, and it allows for greater flexibility in the 
Windows environment. The standard CORBA includes 
three levels, including ORB, public object services, and 
public applications [10]. CORBA is supported on almost 
every combination of hardware and operating system in 
existence. Windows Sockets enables programmers to create 
advanced Internet, intranet, and other network-capable 
applications to transmit application data across the wire, 
independent of the network protocol being used. It defines 
a standard service provider interface (SPI) between the 
application programming interface (API), with its exported 
functions and the TCP/IP protocol stacks [11]. Winsock is 
a lower level but still effective communication technique 

comparing with DCOM and CORBA. Considering the 
complexity of the implementation of the DCOM and 
CORBA techniques, Winsock programming is employed in 
the proposed methodology. 

E. Load Balancing 
Since synchronous communication is used among 

simulators and controller, each simulator can only run as 
fast as the slowest one. So a proper and balanced 
decomposition of the network is critical to the overall 
performance. The computation load study in our previous 
research [8] shows the total computational requirement for 
a microscopic traffic simulation is dominated by the 
number of vehicles in the network at any time, the ideal 
division of network is to create N regions that each has 
exactly V/N vehicles, where V is total number of vehicles 
in the simulation and N is the target number of processors. 
The speed-up performance of the distributed processing is 
also dependent on the communication to computation 
overhead: if there are a large number of communication 
operations for each computational operation, the overall 
process will reduce in speed. In order to minimize the 
communication overhead, distributed simulations require 
methodological decomposition of the large network to find 
a subdivision where there are as few boundaries as possible 
and the computational load is spread evenly across the 
processors. 

F. Synchronization Mechanism Using Conservative 
Time Window (CTW) 
In the research, in order to reduce the synchronization 

overhead, we specify a time window that each sub-network 
simulator is independent within these windows and can be 
processed concurrently. The synchronization work will be 
done at the end of each conservative time window, which is 
greater or equal to the constant simulation time step. The 
problem is how to choose a proper time window. If the 
synchronization time window is too short, such as one 
simulation time-step, then the faster simulators will always 
waiting the slowest one and the synchronization overhead 
will counter the benefits from the distributed simulation. If 
the synchronization time is too long, the local causality 
constraint may be significantly violated, meaning that when 
the vehicle transferred from the slower simulators to the 
faster one, the vehicle may be transferred behind. The 
simulation would thus not be carried out correctly.  

To circumvent this problem, we introduce the transfer 
vehicle forecasting technique. Figure 2 shows the vehicle-
transfer status between sub-networks. Instead of detecting 
the information and transferring vehicle at the boundary of 
the sub-networks (Point B), a detector is put at certain 
distance to the boundary (Point A), collecting and 
transferring the vehicle with the forecasted simulation time 
clock, which depends on the distance of the detector to the 
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boundary, the speed of the vehicle, and etc. In this way, the 
local causality constraints are preserved, and then the 
vehicles across the boundaries between two sub-networks 
can be transferred at the right time, not ahead nor behind.    

 

IV. PERFORMANCE TEST AND ANALYSIS 

A. Prototype for Light Global Control / Independent 
Subnets 
Figure 3 shows the prototype of the distributed modeling 

framework for the light global control / Independent 
Subnets. As we mentioned before, this framework is 
suitable for either decomposing the large-scale network 
into smaller sub-networks, or joining some independent but 
adjacent sub-networks and running them simultaneously 
with vehicles being transferred across the sub-networks. 

The working process is described as follows. First, the 
controller will start the communication client and open a 
socket to listen and send messages, and all the sub-
networks on the sever-computers will be loaded through 
remote control. Meanwhile, the sever-computers will 
automatic establish the connections with the client. After 
all the sub-networks are loaded and all the servers are 
successful connected with the controller client, Paramics 
with different sub-networks will start the simulations 
simultaneously. During each simulation run, the client and 
the servers will communicate through the Windows Socket 
platform. There are two types of message will be 
transferred, one is the synchronized time clock information, 
and the other is the vehicle transfer information. The 
server-computer usually has different simulation speed due 
to a variety of reasons. In order to synchronize all the 
server simulators, the faster simulators need to wait the 
slower ones after each synchronized time window that pre-
defined by the user, such as 30 seconds. Once a vehicle 
arrive the boundary of the sub-networks, the vehicle 
information will be sent from the “upstream” simulator, 
collected and analyzed by the controller, and then 
transferred to the “downstream” simulator. Such 
communication processes will continue until all the servers 
finish the simulations. Finally, the controller can output the 
simulation results as a whole. If multiple runs needed, the 

controller can also call the server simulators for the next 
run. 

 
B. Example Problem and Test Environment 
An example large-scale grid network, as shown in Figure 

4, was built to test the performance of the proposed 
distributed modeling framework. The original network is 
coded with 22 arterials, 120 signalized intersections, 44 O-
D demand zones, and the peak hour demand of the whole 
network is 33840 vehicles. Three scenarios were tested 
with this grid network. In Scenario 1, the grid network was 
evenly divided by 2 parts and simulated at 2 clients with 
the proposed distributed modeling framework. The sub-
network boundary includes 10 connections or transfer 
zones. In Scenario 2, the grid network was evenly divided 
by 3 parts and distributed simulated on 3 server simulators, 
and in Scenario 3, four evenly divided networks were 
simulated on four server simulators, the connection zones 
are 10 for the left and right side parts , and 20 for the 
middle parts. 
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Testing was carried on four desktop PCs: Scenario 1 was 

carried at two desktops, each with one 2.8 GHz CPU 
processor and 1 GB RAM. Scenario 2 was carried with one 
additional workstation that has 3.2 GHz CPU processor and 
2 GB RAM. Scenario 3 was carried with an additional 
desktop with 2.5 GHz CPU and 1 GB RAM. Each server 
computer was carried one part of the origin network in 
Paramics Version 4. All other traffic conditions and 
simulation configurations at each simulator are the same. 

C. Benefits from the Distributed Modeling Framework 
Figure 5 shows the benefits by dividing the large 

network with different number of subnets. It is obviously 
that we will get more benefits with more distributed 
servers. However, because the communication load will be 
significantly increased as the number of server increases, 
the speed-up benefits from the distributed computing 
schemes may be limited. 
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Figure 6 shows the speedup benefit of Scenario 3, the 

large-scale gird network was evenly divided by 4 parts and 
distributed simulated on four desktops. From the figure we 
can see that as the synchronized time window increase, we 
can achieve more benefits because of the communication 
overhead is decreased and the waiting times of the faster 
simulations are also decreased. Moreover, the benefit from 
increasing the time-step, i.e., increasing the computational 
load, is also significant. In this scenario, the benefit from 
the proposed distributed modeling framework was up to 1.8 
with 2 per second time-step, and up to 2.1 with 8 per 
second time-step. Note that the pure computational load of 
8 time steps per second is almost 4 times of that 2 time 
steps per second.  

V. CONCLUDING REMARKS 
A distributed simulation modeling methodology for 

large-scale network is proposed in this paper. In the 
proposed framework, the sub-networks from either the 
division of large-scale networks or being independently 
developed but adjacent to each other can be simulated over 
a cluster of networked PCs in a synchronized fashion.   
Windows socket programming is employed as the 
communication middle ware to transfer the synchronized 
time clock and vehicle information between the client 
controller and server simulators. The method was tested by 
a grid network with 44 O-D demand zones and 120 
signalized intersections with very promising results. 

The research demonstrated in this paper is a light global 
control and independent subnets design. To achieve a more 
accurate distributed simulation results, the heavy global 
controller and coordinated subnets design should be 
considered in the further research, including develop the 
algorithm for global routing, and network decomposition, 
etc.  

REFERENCES 
[1] Moore, G. E. Cramming More Components onto Integrated Circuits. 

Electronics, Vol. 38, No. 8, April 19, 1965. 
[2] Lee, Der-Horng and Chandrasekar P. A Framework for Parallel 

Traffic Simulation Using Multiple Instancing of A Simulation 

Fig. 4.  Example large-scale grid 



 
 

 

 

7

Program, Intelligent Transportation Systems, Vol. 7, No. 3-4, pp. 
279-294. 2002, 

[3] Bernauer, E. Breheret, L., Algers, S., Boero, M., Taranto, C. D., 
Dougherry, M., Fox, K. and Gabard, J. F., Review of Micro-
Simulation Models Appendix D., Ref: SMARTEST/D3, Institute of 
Transportation Studies, Leeds, U.K., University of Leeds, 1998.  

[4] Barceló, J, Ferrer, J.L, García D., Florian, M. and E. Le Saux, The 
Distributedization of AIMSUN2 Microscopic Simulator for ITS 
Applications, Proc. 3rd. World Congress on Intelligent Transport 
Systems, Orlando, 1996. 

[5] Cameron, G. and Duncan, G., PARAMICS-Distributed Microscopic 
Simulation of Road Traffic, The Journal of Supercomputing, Vol.10, 
pp.25-53, 1996. 

[6] Nagel, K., and Rickert, M., Dynamic Traffic Assignment on Parallel 
Computers in TRANSIMS, Future generation computer systems, 
Vol. 17, Issue 5, pp 637-648, 2001 

[7] Quadstone Limited, Paramics User Guide Version 4.0, Quadstone 
Limited, Edinburgh, UK, 2003. 

[8] Liu, H., Ma, W. and Jayakrishnan, R. Distributed Modeling 
Framework for Large-scale Microscopic Traffic Simulation. Proc. of 
84th Annual Meeting of the Transportation Research Board (CD-
ROM), 2005. 

[9] Microsoft Corporation. Distributed Component Object Model 
Protocol-DCOM/1.0, draft, November 1996. Avalable: 
http://www.microsoft.com/Com/resources/comdocs.asp 

[10] Henning, Michi and Vinoski, Steve, Advanced CORBA 
Programming with C++, Addison-Wesley Professional, 1999. 

[11] Microsoft Corporation. MSDN Library Online. 
Avalable:http://msdn.microsoft.com/library/en-
us/winsock/winsock/windows_sockets_start_page_2.asp 


